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Structure of the Heat Shock Protein
Chaperonin-1 0 of Mycobacterium leprae

Shekhar C. Mande, Vijay Mehra, Barry R. Bloom, Wim G. J. HoI*

Members of the chaperonin-1 0 (cpnl 0) protein family, also called heat shock protein 10
and in Escherichia coli GroES, play an important role in ensuring the proper folding of many
proteins. The crystal structure of the Mycobacterium leprae cpnl0 (Ml-cpnl0) oligomer
has been elucidated at a resolution of 3.5 angstroms. The architecture of the MI-cpnl0
heptamer resembles a dome with an oculus in its roof. The inner surface of the dome is

hydrophilic and highly charged. A flexible region, known to interact with cpn60, extends
from the lower rim of the dome. With the structure of a cpnl 0 heptamer now revealed and
the structure of the E. coli GroEL previously known, models of cpnl0:cpn6o and Gro-
EL:GroES complexes are proposed.

Mycobacteria are among the most impor-
tant human microbial pathogens. Mycobac-
terium tuberculosis is estimated to be respon-
sible for 2.02 million deaths per year, par-
ticularly in developing countries, and has
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recently reemerged in the industrialized
countries (1-3). Mycobacterium leprae caus-
es a disfiguring disease, leprosy, in 30% of
the untreated cases. Mycobacteria have
many unusual features, one of the most
remarkable being the ability of these organ-
isms to reside in Schwann cells and macro-
phages, the latter being the very cells that
should destroy the invading organisms. One
of the important antigens of M. leprae rec-

ognized by T cells is cpnlO, a 10-kD heat
shock protein. In patients with tuberculoid
leprosy, approximately one-third of the M.
leprae-reactive T cells that respond to the
whole organism also respond to cpnlO (4).
We report here the crystal structure of M.
leprae cpnlO (MI-cpnlO).

Members of the cpnlO family, GroES in
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Escherichia coli, are known to interact with
members of the cpn6O family, GroEL in E.
coli, forming a complex important for the
proper folding of several proteins (5-7).
Cpn6O is a 14-unit cylindrical protein that
consists of two rings of seven protomers form-
ing a hollow inner cage and two wide open
cavities at each end (8). CpnlO and cpn6O
can form two different complexes. In one, the
cpn6O cylinder is capped on both sides by a
cpnlO heptamer, yielding a cpn60l4:cpnlO14
symmetric complex (9). The second type of
complex is asymmetric with only one cpnlO
heptamer bound to a cpn6O tetradecamer

Fig. 1. Sequence informa-
tion and course of polypep-
tide chain of Ml-cpn 1 0. (A)
Electron density map in
stereo showing the con-
served "signature" resi-
dues 7 to 10 "PLXD" (30)
of Ml-cpn10. This 3.5
A-resolution map was cal-
culated with observed am-
plitudes and phases ob-
tained by starting from the
5 A single isomorphous re-
placement map, which
was subsequently extend-
ed in 150 cycles to 3.5 A by
solvent flattening and sym-
metry averaging (12). The
map is therefore complete-
ly unbiased by the model.
(B) Alignment of the known
cpnl0 sequences as ob-
tained by the Genetic
Computer Group (31). An-
tigenic loops of Ml-cpn10,
the 10-kD antigen (15), are
shown in purple. The flexi-
ble loop of E coli GroES
(13) is marked in green. The
residues highlighted in blue
show a high degree of se-
quence conservation and
are part of the proposed
GroEL interaction site. Res-
idues involved in three
charged rings lining the in-
ner surface of cpnl0 are
marked in orange. The seg-
ment PLXD highlighted in
pink is conserved in all the
known sequences and ap-
pears to be the signature
tetrapeptide of the cpnl0
family. (C) Conformation of
a single subunit of Ml-
cpn10. Only the well-de-
fined parts of the molecule
(residues 1 to 16 and 35 to
99) are shown. The five-
stranded antiparallel 1B
sheet A consists of residues
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(10). The bound cpnlO increases the adeno-
sine diphosphate affinity of cpn6O by about
four orders of magnitude (6) and, in a process
for which many aspects still need to be unrav-
eled, allows the cpn6O tetradecamer to use
adenosine triphosphate (ATP) in the refold-
ing of the substrate protein (6, 7, 11).

The crystal structure of Ml-cpnlO was
solved by the isomorphous replacement
method with a single poor derivative that
yielded phases only up to -5 A resolution
(12). In the resulting single isomorphous
replacement map, the outline of the mole-
cule was quite clear. Subsequent solvent

flattening and sevenfold density averaging
allowed a dramatic improvement of the
electron density distribution, which could
be correlated unambiguously with the ami-
no acid sequence of Ml-cpnlO (Fig. 1, A
and B). Only one region of the molecule,
comprising residues 17 to 35, has discontin-
uous density, and this is exactly the region
in E. coli GroES that has been reported to
be flexible (13).

The 99-residue polypeptide chain of a sin-
gle Ml-cpnlO subunit has a triangular shape
with dimensions of approximately 37 A by 32
A by 37 A and with a distinct hydrophobic

C

t

35 <
..

10 20 30 40
ILVQAGEAET
ILVQANEAET TTASGLVIPD TAKREPQEGT VVAVGPG
ILVQANEAET TTASGLVIPD TAKPQEGT VVAVGPG
VLVERSAAET VTKGGflf PE KSQQVLQAT VVAVGSG
VLVERSAAET VTKGGM.PE KSQSVLQAT VVAVGSG
ILVQRVIQPA KTESGILLPE KS.NUNS= VIAVGPG
VLVQRIKAQA KTASGLYLPE KNVLNQAE VVAVGPG
VLVKRQEV1S KSAGGIVLTG SAAQtSTRGT VTAVGKG
VILKREEVET CSAGGIVLTG SATISTEGK VIAVGTG
VIV _ 1 E ~~~~VLAVGNG

ILViREEKER TARGGIILPD TMKQDRAE VLVLGT
ILVKREEEDS TARGGIILPD TARtEQDRAK VLVLGTG
ILVEKEBEAS TARGGIILPD 1 AE VLALGTG
IVVQPLDAEQ TTASGLVIPD TAKIQEGV VLAVGPG
IVVQPLDAEQ TTASGLVIPD TAKPQEGV VLAVGPG
VLVEPRQEAE EKIGSIFVPD TAKEQEGK VVEIGSG
VVIKRIEARE TTKSGIVLPS SA WEVVAVGPG
VVIKRLEAME TTKSGIIVTG TA LPQEAE VVAVGPG
VVVRRVESEA KTKGGIIIPD TAKPQEGE IVAVGSG
VVVRRVESEA KTAGGIIIPD TADP REG VVAAGAG
VVVRRHEEER TTAGGIVIPD SATUaPTRGE IIAVGPG
VVVRPEEER TTAGGIVIPD SAT IIPIGE IIAVGAG
VVVRRLEEER TTAGWIVIPD SAT5PMRE IIAIGAG
VVVRRLEEER TSAGGIVIPD SAAUPSRGE VISVGPG
VVV}IMEEER LSAGGIVIPD SATOPIQGE IIAVGHG
VVIRRSEEET KTAGGIVLPG SAA_PNRE VVAVGT
VFVKVAEAEE KTAGGIILPD NAKUPQVGE IVAVGPG
VFVKVAEAEE KTAGGIILPD nmAKPQVGE IVAVGPI
VFVKVSPAEE KTAGGILLPD NAKIIPQIGE VVQVGPG
VVIEVIETEE KTASGIVLPD TA^KPQGR VVAVGRI
IVIEVVETEE KTASGIVLPD TAIPQBG VVAVGAG
VVIELVESEE KTASGIVLPD SA}UPQEGK IVAAGSG
VIIEEKEQBQ TTKSGIVLTD IVAVGTG
VVLRVKEEE KSHOGIVLTS ASQPQTAE VVAVG13
VLIKTRIVEE KTTSGIFLPT MQ VVAIGSG
LLIKVAEVEN KTSGGLLLA SS PSFGT VVATGPG
VLVEPIQNDE .AHGKILIPD I VVMVGGI

76 to 80 (17), 84 to 88 (138), 12 to 15 (132), 41 to 44 (14), and 63 to 65
(15). The four-stranded antiparallel 13 sheet B comprises residues 38 to 41
(133), 67 to 70 (136), 94 to 98 (139), and 4' to 8' (13') of another subunit.
Because of the limited resolution of the MI-cpnl 0 structure, these visually

50
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GAlin _ XYGGTI. IKY NGE3YLILSA

DGXRIPLD VAEGDMVIYS IEKGGTR. IKY NGYLILSA
DGERIPLD VAEGDTVIYS XG3. INY NGEYLILSA
GG.EIQPVS VKVGDKVLLP XTGGTKVVLD .DDYFLFRD
GG.EIQPVS VKVGDKV.LP NTGGTKVVLD DDYFLFRD
DG.KLIPVS VKEGTVLLP mYHLFRD
NG.NKVVPQ VKVGDQVLIP QVGGS!IIKG NDFVILFRD
NG.DIKPLD VEVGDVVIFN YG ELLILTE
NG.SIQPLS VKEGUISVIFN UPYGREVEI DGEEILILSE
NG.EVKPLD VKVGDIVIFN Y S EUVLIMSE
DG.TLLPFE VQVGDIILMD UAGQU. II DDEMYVILQS
DG.NVLPFE VTVGDTVLID TAGQ3.L4VI EV
KG. QQLPFE VQVGDIVLID UTSGQR.L!V EGY
GE. .RLPLD VKTGDVVLYS EYGGTZ.VIY NGEUYLVLSA
GH. .RLPLD VSVGDVVLYS XGGTU.VXY NGEEYLVLSA
3..KLIPLE VKVGDTVLYG %tSGTX.IIRS EGKLIIRE
.G.KEIQMQ V DKVFFS ST. INV DNITLLILRQ
G.KRTEME VKIGDKVLYS XKAGTU.VF EGEZYTILRQ
AG.KVVALD VKVGDRVLFG .(SGTU.VEL DGESSIMKE
AG.RLVPLD VKAGDVLFG IISQTX.VKI GGEDLLIME
NG.DVRALA VKVGDVVLFG IYSGT.VKIS
IG.DVRALA vKvGDvvLFG .VKV DGKEVVE
IG.DVRAFV VKVGDVVLFG KYSIFDU.VKV AGQELV E
NG.EVRSLD VKVGDQILFG XUAGT3.VXL AGDSYIVRE
NG.SVRALD VKVGDSVLFG KYSGT.VKL
IG.EVRALA VDVVFG T ERLV
DG. SRQAPE VKIGDKVLYS RTAGTD. IlL GDRYVLLSE
DG. SRQAPE VKIGDKVLYS UAGTD.IL IDDYVLLSE
DG.TYSPVE VKVGDKVLYS IMAGTD. IJL GGDOYVLLTE
SG.ERVAPE VEVGDRIIFS XXAGTU.VKY DGMLILRE
JG.QRIGRIK SKVGDRVIFS .VGT.VEY DGKYLIR
SG.ERVALE VKG1DRIIFS IZAGTU.VKY EGTRYLILRE
G.TRVTPE VKEGDRVVFQ fAGTC.TVIR IYR E
HG.TLISPL VKVGDTVIFE VAGT.VKK DGEIFLILKD
.GDKKLPVA VKTGAEVVYS KWI'T. IXV DGSHLIVKIEC
EG.NRIPLP VCSGNTVLYS V DGSVYSVLRV
KGG.DITPLK VKKGDTIVYT GT. IL ESVYVVIKE

99
VLAWVSR.
VVGRRFR...
VLAWVSR...
ILGRYVD...
ILGRYVD...
V=471.1.
IIJUKIAKD
I LAIVE.. ..
I LAIVE.. ..
IrAIVEA...
tMAVLR.. .
VNAVLR.. .
VtIAVLQ .. .
VLAIIBEK...
VtLAIV3RK...
ILAVVKR...
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IMGIIG .. .
ILGIVG.. .
n}IIGER...
1nGVEK...
lmrxVIBR...
CNGIBR...
32IAVVEG...
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ILAVVA.. .
IIASVA.. ..
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ILAVIG.. .
ILAVIE .. .
LL}.. ..
IIGIL13TD DV
KVL;S .. .
ILLVKS .. .

derived P strand-defining residue numbers are approximate. Residues
contributing to the hydrophobic core of the molecule are lle12, Val14, Val42,
Val68, Tyr70, Leu83, and Val93, which are highly conserved in the cpnl0
family [see (B)].
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core formed by two orthogonal antiparallel P ranged in a dome-like structure that has close Val3, Ile5, Leu8, Ile78, and Ile88 of one mono-
sheets. The five-stranded 1 sheet A is formed to sevenfold symmetry for almost all residues, mer, and Pro30, Ile69, Val93, Leu94, Ala95,
by 13 strands 7, 8, 2, 4, and 5, whereas the except for the flexible loop (Fig. 2A). The Val96, and Val97 of another monomer (Fig.
four-stranded sheet B is formed by 1 strands 3, interactions between the subunits are mediat- 2B). All of these residues except Val3 and
6, and 9 plus 1 strand 1' provided by a neigh- ed mainly by the two antiparallel 1 strands, Val97 are conserved as apolar residues in the
boring subunit (Figs. IC and 2A). 13' and 19. The hydrophobic interface be- known cpnlO sequences (Fig. 1B). Each

The seven MI-cpnlO monomers are ar- tween the two subunits is formed by residues monomer buries 1765 A2, constituting as
much as 28% of its total surface area, on
heptamer formation. Of the total buried area,

A 1291 A2, or 73%, is apolar. The diameter of
I f7. \, e I T 't I the heptamer is -80 A perpendicular to the

V ~~~~~~~~~ r~~~~~~~~ ~~sevenfold axis and -35 A measured parallelI~k .'>>tothe axis (Fig. 3A). The top of the dome has
an opening with a cross section of - 12 A.0
The architecture is strikingly similar to that of
the Pantheon in Rome.

22 i I <S 32IThe inner surface of the dome is com-
- '.-., 0 l > U t(/$/7s=Apletely hydrophilic with a total of 63 posi-

..% WAs- [- % | 4 <tively and negatively charged residues ar-
N-~~~~~~~~~~~~ ~~~~~~~ ~~ranged in concentric rings. The oculus of

the dome is lined by a ring of negative
carboxylates provided by Asps5, Glu52, and
Asp53 of each subunit. Subsequent rings are

[I, formed by the positive charges of Arg49 and

Fig. 2. Structure of the Ml-cpnlO heptamer. (A)
B Stereo view of the Cot trace of the heptameric

molecule with each subunit in a different color and
_ Val 3X | Val 3 key features color-coded. The two major T cell

epitopes (15) of the molecule are shown in cyan.
One of these encompasses the loop of residues
48 to 63 forming the "finger" extending to the

- ( - ( e } Xoculus in the center of the heptamer. Residues
IleS Ile 5 shown in dashed lines could not be assigned an

unambiguous sequence number but must form
part of residues 17 to 34, known to be flexible in

61_2 /62 . \_/(GroES (13). The dashed residues of this flexible
le 71 e 662 AIe 71 le62 loop, shown in between each pair of monomers in

- K } \ t t /the heptamer, are most likely connected to the

Ile 8 le 8 subunits of the crystallographically related hep-
tamer, as depicted in Fig. 3. (B) The monomer-
monomer interface. The two monomers are

Pro 0 0 shown in blue and pink. The first strand of one
monomer and the last strand of the second mono-
mer form an antiparallel 13 sheet. The interface is
predominantly formed by hydrophobic residues,
which virtually all are conserved as apolar residues
in the entire cpnl 0 family (see Fig. 1 B and text).

Fig. 3. Characteristic features of the _
MI-cpnl 0 heptameric molecule (29).
(A) Side view of the "dome" per-
pendicular to the sevenfold axis. The
central opening, or "oculus," is
seen in the shadow of the heptamer.
The flexible loops are assumed to
extend downward from the dome. In
the crystals, two Ml-cpnl 0 hep-
tamers interact with each other by
juxtaposing their rims, forming a
heptamer dimer with approximate
D7 symmetry. The sevenfold axes of
the upper and lower heptamers
make an angle of -70 with each oth-
er. The distance between the upper
and lower oculi of this tetradecamer
of MI-cpnl0 is -72 A. (B) Con-
served features of the heptamer, viewed along the sevenfold axis. The flexible loop and other potential residues for GroEL interactions are shown in red. These
features would be "seen" by members of the cpn60 family, such as GroEL, when docking with the cpnl0 dome.
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Arg9 , the negative charges of Glu9 and
Asp'0, and, near the rim of the dome, by
Lys"l and Asp92. The lower rim of the dome
contains several well-conserved residues
such as Glu35, Lys36, Lys72, and Tyr73, and
of particular interest is the flexible loop,
which probably extends from the rim
"downward," ready to interact with the
cpn60 tetradecamer (Fig. 3B). Lys36, which
has been implicated to modulate the allo-
steric transitions in GroEL (14), is fully
solvent-exposed and appears to be well po-
sitioned to interact with GroEL.

Residues 25 to 42 and 57 to 71 have
been reported to be the immunodominant
T cell epitopes of MI-cpnlO (15). One of
these epitopes appears to compose a part
of the flexible loop. The other contains
part of the long loop formed by residues 48
to 63, which reaches out from the "body"
of each subunit to the edge of the oculus
(Fig. 2A). The two epitopes are spatially
close together.

The three-dimensional structure of Ml-
cpnlO reported here can be combined with
the structure of E. coli GroEL (8) to form a
model of a cpn60:cpnlO assembly, guided
by numerous electron microscopy studies on
GroEL, GroES, and their complexes (9, 10,
16). In our model the source of the GroEL
structure is E. coli, whereas the source of
the GroES structure is M. leprae. Because

(i) the cpn60's and cpnlO's from different
sources have been shown to form hybrid
complexes and aid in the folding of some
proteins (17), and (ii) circular dichroism
studies reveal structural similarity among
cpnlO proteins from different species (18),
our model can provide insight into the
overall architecture of GroEL:GroES com-
plexes. We refrain from going into great
detail because (i) the flexible loop of GroES
is reported to undergo a conformational
change on interacting with GroEL (13); (ii)
many residues in the apical domain of the
GroEL cylinder, which interacts with
GroES, are structurally not well defined (8,
19); and (iii) GroEL undergoes a major
conformational change on binding cpnlO
(GroES) (16). Nevertheless, a simple dock-
ing experiment (Fig. 4) shows that the
dome of cpnlO "caps" the GroEL cylinder,
creating a large cavity that provides space
for a substrate protein. The surface of this
cavity provided by cpnlO is very hydrophil-
ic, a property that is well conserved in the
cpnlO family (Fig. 1B). This polar inner
cpnIO surface suggests the hypothesis that
cpnlO might play an active role in assisting
the folding of certain proteins [see also the
cross-linking experiments in (20)] by
binding to hydrophilic stretches of amino
acids of substrate proteins, while avoiding
interactions with hydrophobic stretches of

Fig. 4. Models of GroEL:GroES (cpn6o:cpnl 0) complexes based on the structures of MI-cpnl 0 (Figs. 2
and 3) and E. coli GroEL (8). The sevenfold axes of MI-cpnl 0 and GroEL are aligned and rotated such that
the flexible loops of Ml-cpnl0 fit into the "crevices" of GroEL between the apical domains. The com-
plexes depicted show the cpn60:cpnl 0 complexes just before the apical domain of GroEL undergoes a
conformational change (16) and are representative for the entire family because of the high sequence
conservation among the cpn60 (5, 32) and cpnl 0 proteins (Fig. 1 B). (A) MI-cpnl 0 structure docked onto
the structure of GroEL (8) viewed along the sevenfold axis. The outer diameter of the GroEL cylinder is
-135 A, that of the MI-cpnl0 (GroES) dome is -80 A. The asymmetric structure shows that the
dimensions of GroES would be sufficiently large to block the entry, and escape, of substrate proteins into
the GroEL central cavity on one side. (B) Side view of an approximate model of the symmetric complex,
which might have a transient function in the chaperonin cycle showing the "(American) football" shape of
the tetradecameric GroEL associated with two heptamers of MI-cpnl 0. The "windows" of GroEL (8)
allow a view in the central cavity of the cylinder, whereas the Ml-cpnl 0 (GroES) domes virtually completely
close off the two cavities at the ends of the symmetric GroEL cylinder.

amino acids, which are to form eventually
the interior of the substrate protein. The
importance of the GroEL:GroES, or "cis,"
cavity in the asymmetric complex for pro-
ductive release of folded protein has re-
cently been emphasized (21). The func-
tion of GroEL, on the other hand, might
be the formation of temporary, ATP-driv-
en interactions with hydrophobic parts of
the substrate protein (22), thereby de-
creasing free energy barriers when rear-
ranging misfolded clusters of hydrophobic
residues of the substrate protein into cor-
rectly folded hydrophobic cores.
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Protection Against Osmotic Stress by
cGMP-Mediated Myosin Phosphorylation
Hidekazu Kuwayama, Maria Ecke, Gunther Gerisch,

Peter J. M. Van Haastert*

Conventional myosin functions universally as a generator of motive force in eukaryotic
cells. Analysis of mutants of the microorganism Dictyostelium discoideum revealed that
myosin also provides resistance against high external osmolarities. An osmo-induced
increase of intracellular guanosine 3',5'-monophosphate was shown to mediate phos-
phorylation of three threonine residues on the myosin tail, which caused a relocalization
of myosin required to resist osmotic stress. This redistribution of myosin allowed cells to
adopt a spherical shape and may provide physical strength to withstand extensive cell
shrinkage in high osmolarities.

Cells exposed to osmotic stress can avoid
dehydrative collapse either by using a cell
wall (1) or by increasing the intracellular
osmotic potential by synthesis of small mol-
ecules like glycerol, uptake of ions, or dis-
charge of water (2). Actin and some of its
binding proteins are required to resist high
osmotic stress in yeast (3). The other major
component of the cytoskeleton, myosin II
or conventional myosin, exerts motive force
by interacting with actin filaments (4). Dic-
tyostelium discoideum is a microorganism
with a small haploid genome from which
mutants altered in cytoskeletal proteins
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*To whom correspondence should be addressed.

have been isolated (5-7). Studies of mu-
tants lacking myosin II heavy chain (mhc-)
reveal that this form of myosin is essential
for cytokinesis, capping of cell surface lectin
receptors, and normal cell motility and che-
motaxis (5, 8, 9). Here we have used D.
discoideum to investigate the role of myosin
II in protecting amoeboid cells from high
osmotic pressure.

Wild-type XP55 cells resisted an osmotic
shock of 300 mM glucose for -30 min; 50%
of the cells died after a shock of about 60 min
(Fig. IA). In contrast, mhc- cells were very
sensitive to osmotic stress with a 50% reduc-
tion of cell viability after 5 to 10 min (Fig.
1A). Cells of the mhc- mutant that had been
transfected with complementary DNA
(cDNA) encoding normal myosin II heavy
chains (mhcwt) showed a viability comparable
to that of the wild-type XP55 (Fig. 1A).
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Myosin II filaments bind to actin fila-
ments more effectively than myosin mono-
mers (10, 11 ). Phosphorylation of myosin II
at three threonine residues of its tail region
inhibits filament formation (10, 12) and
thus weakens the interaction with actin
filaments. Mutant mhcAAA produces a my-
osin II heavy chain in which the phospho-
rylatable threonines are replaced by alanine
residues. As a consequence of this muta-
tion, myosin II exists predominantly in the
filamentous state, and the assembly and
disassembly rate are probably strongly re-
duced (9, 10). These mhcAAA cells showed
the same sensitivity to high concentrations
of glucose as mhc- cells (Fig. IA), which
suggests that phosphorylation of myosin II
at its tail was required to protect cells
against osmotic stress (13).

Guanosine 3' ,5 '-monophosphate (cGMP)
acts as a universal second messenger in eu-
karyotic cells (14). In D. discoideum, cGMP
levels increase upon stimulation with the che-
moattractant adenosine 3',5'-monophosphate
(cAMP) (15). Intracellular cGMP regulates
the assembly and disassembly of myosin fila-
ments by inducing the phosphorylation of the
threonine residues (16). Osmotic stress also
activates guanylyl cyclase in wild-type D. dis-
coideum cells; the cGMP concentration in-
creased after 1 min and reached a peak at -10
min after the onset of stimulation (17) (Fig.
1B). A transient accumulation of cGMP lev-
els upon addition of 300 mM glucose was also
observed in wild-type XP55 and in the mhcwt,
mhc-, and inhAAA strains (Fig. 1B). No in-
crease of cGMP levels was found in the
nonchemotactic mutant KI-8 in which gua-
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